Mapping Class Group of a Torus And a Word on its Application

Jasmine Tom from the CUNY Graduate Center

Midwest Summer School in Geometry, Topology, and Dynamics June 2, 2025

Definition

Let S be an orientable surface. The **mapping class group** of S, denoted by MCG(S), is the group of homotopy classes of orientation-preserving homeomorphisms of S, i.e. $MCG(S) = Homeo^+(S) / Homeo_0(S)$.

Definition

We define a **Dehn twist** on an annulus A as follows:

$$T_A : A \longrightarrow A$$
$$(r, \theta) \longmapsto (r, \theta - 2\pi r),$$

where the boundary of A, denoted ∂A , is fixed pointwise.

Let S be an orientable surface with two simple closed curves α and β . Then a Dehn twist about α on S is obtained by choosing an annulus A, applying T_{α} and extending by the identity, i.e. fixing every point in $S \setminus A$.

Dehn Twists on a Torus

Mapping Class Group of a Torus

Q

Theorem

 $MCG(T^2) \cong SL(2,\mathbb{Z}).$

Proof

Outline:

- 1 Construct a map $\sigma : \mathsf{MCG}(T^2) \to \mathsf{SL}(2,\mathbb{Z}).$
- **2** Take an element of $MCG(T^2)$. In particular, let T_{α} be a Dehn twist about a simple closed curve α on T^2 .
- **3** Using the fact that \mathbb{R}^2 is the universal cover of T^2 , choose a preferred lift \tilde{T}_{α} of the mapping class representative.
- Every simple closed curve on a torus can be homotoped to intersect a point and lifts to a line through the origin which also passes through another integer point. In fact, the first such point is (n, m), where gcd(n, m) = 1.

Mapping Class Group of a Torus

W

Theorem

 $MCG(T^2) \cong SL(2,\mathbb{Z}).$

Proof. (cont)

- **(**) Since there is a bijective correspondence between nontrivial homotopy classes of oriented simple closed curves on T^2 and the primitive elements of Z^2 , there must exist some matrix $A \in SL(2, \mathbb{Z})$ such that A((n, m)) = (1, 0).
- **7** Notice that $\tilde{T}_{\alpha}(1,0) = (1,0)$ and $\tilde{T}_{\alpha}(0,1) = (1,1)$. Thus, \tilde{T}_{α} is a linear, orientation-preserving homeomorphism of \mathbb{R}^2 preserving \mathbb{Z}^2 .
- **(3)** It follows that \tilde{T}_{α} is isomorphic to T_{α} , where $T_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $T_{\alpha}(1,0) = (1,0)$ and $T_{\alpha}(0,1) = (1,1)$.
- $oldsymbol{9}$ So we can represent a Dehn twist about lpha as

$$T_{\alpha} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

W

Theorem

$$MCG(T^2) \cong SL(2,\mathbb{Z}).$$

Proof. (cont)

① Similarly, we find that we can represent another representative of a mapping class, a Dehn twist about β , as

$$T_{\beta} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

() Recall that $SL(2,\mathbb{Z})$ is the set of all 2×2 matrices with integer entries and determinant 1 that is generated by the matrices T_{α} and T_{β} . It turns out that the mapping class group of the torus is generated by the same matrices. \Box

Mapping Class Group of a Torus

W

Theorem (Nielsen-Thurston Classification)

Every homeomorphism between compact orientable surfaces is either periodic, reducible or psuedo-Anosov.

Remark

Mapping class groups act on Teichmüller space by isometries. So $MCG(T^2)$ acts on $Teich(T^2) \cong \mathbb{H}^2$ by isometries. An isometry of the hyperbolic plane is a Möbius transformation γ . If we study the fixed points of γ , then we obtain the three cases of the NTC. In the Anosov case, γ has two distinct fixed points on $\mathbb{R} \cup \{\infty\}$.

Upshot

We can extend our constructions of Anosov homeomorphisms of T^2 to psuedo-Anosov homeomorphisms on S_q , where $g \ge 2$.